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Abstract 
This paper describes a research program aimed at improved 

largGscaleacmauh 'cal systems. ' he  research involves 
new approaches to system decomposition, inter- 
disciplinary communication, and methods of exploiting 
coarse-grained parallelism for analysis and optimization. 
A new architecture. that involves a tight coupling between 
optimization and analysis, is intended to improve efficien- 
cy while simplifying the structure of multidisciplinary, 
computation-intensive design problems involving many 
analysis disciplines and perhaps hundreds of design vari- 
ables. Work in two areas is described here: system decom- 
position using compatibility constraints to simplify the 
analysis structure and take advantage of coarse-grained 
parallelism; and collaborative optimization, a decomposi- 
tion of the optimization process to permit parallel design 
and to simplify interdisciplinary communication require- 
ments. 

methods for multidisciplinary &sign and optimization of 

Intmductiw 
Thc design of complex systems often involves the work of 
many special@ in various disciplines, each dependent on 
the work of other groups. When a single chief designer or 
core team is able to develop and apply design tods in all 
disciplines, difficulties in communication and organization 
are minimized. As design problems become more com- 
plex, the role of disciplinary specialists increases and it be- 
ann@ more difficult for acentral group to msnage thepro- 
cess. As the analysis and'design task becomes more 
decentralized,communicationsrequirementsbecomemore 
severe. These dimculties with multidisciplinary design are 
particularly evident in the design ofaempek vehicles, a 
pocess that involves complex analyses, many disciplines, 
and a large design space. Advances in disciplinary analy- 
ses in the last two decades have only aggravated these 
problems, inmasing the amount of shared infamation and 
outpacing developments in interdisciplinary communica- 
tions and system design methods. 

Aerospace design methods W o n  the model of a central 
designer havebetn widely used in aircraft conceptual de- 
sign for decades and have p v m  very effective when re- 
stricted to simple problems with very approximate analy- 
ses. These large, monolithic, analysis and design codes are 
truly multidisciplinary, but as analyses have become more 
complex such codes have grown so large as to be incom- 
prehensible and difficult to maintain. 
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Since few know what is included in the code,rcsultsan 
hard to explain and not credible. when simplified to be 
manageable, dre analysis becomes simplistic and agah 
poduc# rtsults that are incredible. Mofe~va ,  complex 
in- ' s between disciplines, even in simpler pro- 
grams make modification or extension of existing analyses 
difficult. Thc problems are evidenced by the use of very 
SimplifKd aerodynamics in synthesis codes that deal with 
hundreds of different analyses. Discussions in the litera- 
ture of multidisciplinary design problems involving more 
complex analyses are almost invariably restricted to two 
or (rarely) three des. The difficulties involved in deal- 
ing with large multidisciplinary problems lead to such re- 
sults as limited design "cycling", cruisedesigned wings 
with offdesign "fues". and an inability to efficiently con- 
sider innovative configurations. A need exists, not simply 
to increase the speed of the analyses, but rather to change 
the structure of such design problems to simultaneously 
improve pedormance and reduce complexity. 

This peptr introduces new mhitcctures forthe &sign of 

ezed here include, first, the simplifiaion and decomposi- 

complex systems and ckscrii tools that may aidin the 
implemenmion of these schemes. The epproeches consid- 

tion of analyses using nume;rical optimization and, next, 
the transformation of the design problem itself into pad- 
lel, collaborative tasks. A decomposition tool based on a 
genaic algorithm is introduced to aid in poblem formula- 
tion. 

summarv 
Although ane often thinks of multidisciplinary opimiza- 
tion of an aircraft configmtion as pceeding logically 
from geometrical description to disciplinary analyses to 
performance constraint evaluation, the actual structure of 
analysesin an aircraft conceptualdesign method is much 
more complex. Figure 1 shows the connections between 
just some of the subroutines in one such program (Ref. 1). 

Figure 1. Connections between analyses 
inanaircraftdesignproblem. 



Figure 2 illusbratts thc connections anxmg analyses $1 a 
more smK!tundfomratas&saibcd in reference2 Hat, 
it is assumed that routines are exauted serially, from the 
upperlcfttothctowaright Linesconneca 'ngoneroutine 
to another on the uppa right si& thusrepresemt feed- 
fma& while lines totbc left orbelow represent an h a -  
tive feedback. 

Figure 2. Connections among analyses as viewed in a de- 
pen-ydiagram. 

Planningprosramssuchas DeMaid(Ref. 2)canbeUsed to 
re-orderandammgeanalyses to minimize the extent of 
feed-- tietween groups, but, in general, leave an itera- 
tive system. The desirability of removing largescale im- 
ation h m  such systems has been described in Refs. 34,  
which cite increased function SmOOthneSS and system 
comprehensibility BS advantages. One to treat- 
ing DAGS (directed acyclic graphs) hm complex, itera- 
tive analysis strucmes is to use opimization to dm 
the convergence constraint explicitly. That is, an illlxiliary 
variable representing b e  starting "guess" for the itemtion 
is added to the list of optimization design variables along 
with an d t i o a a ~  "compatiiiitty" constraint that repre 
sents the convergence criterion. Such an approach leads 
to 'smoother functions for the optimizer and is often more 
robust than conventional fixed-point iteration. The result- 
ing analysis structure is shown on the left side of figure 3. 

when one applies the same concept to tile feed-fmvard 
connections as well, the structure on the right side of the 
figure is produced. This strikingly simple system repre- 
sents a decomposition of the ariginal problem that is not 
only free of iteration, but also parallel. The optimization 
process enforces the requirement that the results of one 
computation match the inputs to another, permitting serial 
tasks tobe parallelized in atransparent manner. As the 
optimization proceeds, the discrepancy between assumed 
inputs (auxiliary design variables) and computed values is 
reduced to a specified feasibility tolerance. 

To 

Figure 3. Decomposition using compatibility constraints 

Through the compatibility constraints, the optimizer en- 
forces the requirement that the various subproblems are 
using consistent data, as the auxiliary variables are driven 
toward their computed counterparts. This allows the sub 
problems to be run in parallel even though they form an 
overall serial task. While this can improve computational 
efficiency in some cases, it may have even greater impact 
in the development, maintenance, and extension of analy- 
ses for multidisciplinary optimization, since each subpmb- 
lem (which may correspond to one discipline) communi- 
cates with other groups only through the optimizer. 

Decomposition with compatibility constraints was studied 
in an aircraft design problem using the pgram, PASS 
(Ref. 5). PASS is an aircraft synthesis code with dozens 
of disciplinary analysis routines, combined with NPSOL, 
a numerical optimizer based on a sequential quadratic pro- 
gramming algorithm. (Ref. 6). The problem studied here 
involves minimization of direct operating cost for a medi- 
um-range commercial transport, with 13 design variables 
and nine constraints. Design variables included: maxi- 
mum take-off weight, initial and final cruise altitudes, 
wing area, sweep, aspect ratio, avg. t/c, wing position on 
fuselage, tail aspect ratio, takeoff flap deflection, sea- 
level static thrust, max. zero fuel weight, and actual take- 
off weight. Constraints included: range, climb rates and 
gradients, field lengths, stability, surface maximum CL'S, 
and maximum weights. 

llreanaiysis wasdecomposed into three pamas shown in 
figure 4. Each part contains several analysis routines, with 
the resulting groups representing (roughly) structures, 
high-speed aerodynamics, and low-speed performance. 
The decomposition introduces five auxiliary design vari- 
ables and their five associated compatibility constraints 
represented by the dashed lines in the figure. 
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Figure 4. Decomposition of an aircraft design problem 
into three subproblems. 

Despite the increased size of the decomposed problem, the 
computation time for a converged solution is actually re 
duced by 26%. A more interesting measure of cmputa- 
tional efficiency is the number of calls to various analysis 
subroutines. PASS routines are relatively simple, and the 
overhead involved in the optimization can be significant 
compared to the actual analyses. Since the present method 
of decomposition is intended for analyses that are more 
complex, the efficiency of the scheme is best measured by 
the number of calls to analysis subroutines. The tMal 
numberofsubroutintcalls is shown in figure5 Not only 
is therea299b decreaseinccnnputation forthe simple,se- 
quential execusion of the decomposed problem, but pard- 
le1 execution of the three subproblems decreases the can- 
putation time by 69%. 
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Figure 5. Results of 3-part decomposition of a h a f t  de 
sign problem. Solved using PASS and NPSOL on an IBM 
RS/6000. 

The aircraft design problem has been solved on a heten 
geneous distributed network as shown in figure 6. The 
three analysis groups wait for the communication subrou- 
tine to write the latest values of the design variables to a 
file. They then compute the constraints (or objective) for 
which they are responsible, and write the results to another 
file. The communications subroutine reads the results and 
sends them to NPSOL, which returns a new set of design 

variable valucs. This filesharing technique is simple but 
computationally expensive, and is intended not to show 
gains in computational efficiency. but rather to demon- 
strate the feasibilityofpeFallelexecutMn oftheduxm- 
Pasedsystem- 

Figure 6. Aircraft design problem solved on a heterogene- 
ous distributed network. 

The simplitication of the analysis by decompogitian was 
evident in the size of the database required far each sub- 
problem, averaging about half the size of that for the inte- 
grated problem. This makes it easier for a user to write, 
maintain, and modify that set of analyses without detailed 
knowledge of other disciplines. 

The Compatibility constraint, y = y', may be posed in S ~ V -  

eral forms. Sincenumerid optimizers can be sensitive 
to such details of problem fornulation, a systematic study 
of the effect of changing the form of compatibility con- 
straints was undertaken. The following examples were 
considered: 
1. y - y' I * E 1  

2 .  ( y  - y ' P  s E2 
3. y/y' = 1 + & 3  
4 .  ln(y /y ' )  = 1 f e4 

The limits el - ~4 were adjusted to demand a consistent 
level of accuracy, but the compatibility constraint scaling 
is not easily established and so the optimization was nm 
with a variety of scaling. The data shown in Table 1 is 
thus a measure not only of the relative computation times 
associated with the various forms of the compatibility con- 
straints, but also of the sensitivity of each to scaling. The 
convergence rates are high enough for each form that it 
may be assumed that a "good" scaling can be found for 
any of the forms. The results show that differences of 
squares are faster than the other forns, possibly because it 
avoids switching of active constraint sets. 

699 



Total %Converged CPU CPD Form 
Run8 Avg . Min . ----- ,-----_----_------_-_^________________ 

Y-Y' 86 87 22.0 17.5 
(y-y' 27 89.3 18.1 13.6 
YIY * 20 100 21.0 18.3 
ln(y/y') 36 88.9 20.7 17.4 

Table 1. Results with different forms of consttaints 

Summzw 
Although the decomposition of analyses using compatibil- 
ity constraints simplifies the complex analysis structure in 
MDO problems and can be used to parallelize the process, 
it is still subject to the following criticism: 1. The individ- 
ual disciplines provide analysis results but do not have a 
clear mechanism for changing the design. The actual de- 
sign work is relegated to a c e n t d  authority (the single op 

design expertise to satis@ discipline-specific problems. 

tion on aUconstraintsand gradients must be passed to the 
system level optimizer. 3. All design variables, con- 
straints, and analysis interconnections must be established 
Q priori and described to the system optimizer. 

thizer) and the disciplinesarenotpermiaed toapply their 

2.~communicacionrequiremartsm~vexe. Infama- 

Especially in cases that involve weak interdisciplinary 
coupling and a large number of discipline specific con- 
straints, this centralized design approach is not approPri- 
ate. Incertainspecialcasesahierarchicadeumnposition 
is possible. Such cases involve local variables that have 
no effect on other disciplines and have been widely report- 
ed (Refs. 7-8). Unfortunately most problems do involve 
substantial interdisciplinary coupling and non-hierarchical 
decomposition schemes (Ref. 9) similar to the method de- 
scribed in the previous section are suggested. 

One may, however, extend the idea of compatibility con- 
straints to produce a two-level decomposition from an ar- 
bitrarily connected set of analyses. This section describes 
how this m y  be done soas to decompose, not just the 
analyses, but the design process itself. "%e basic structure 
is illustrated in figure 7. Individual disciplines involve 
both analysis and design responsibilities, communicating 
(directly in a single program, or over a network) with a 
system-level coordination routine. 

I y h  J 
Figure 7. Basic structure for collaborative Optimization. 

The basic approach requires that the decentralized groups 
satisfy their local constraints so that discipline-specific in- 
formation need not be communicated to other groups. In 
order toassure that the local groupscan succeed in this 
task, they are permitted to disagree with other &roups dur- 
ing the course of the design p e s .  The objective of the 
subspace qtimizers is to minimize these interdisciplinary 
discrepancies while satisfying the specified constraints. 
The system level coordination optimizer is responsible for 
ensuring that these discrepancies are made to vanish. 
More specifically, the system level optimizer provides tar- 
getvalnesforthoseparmems tbataresharedbetween 

get values to the extent permitted by local amstraints. 
groups. Tbegoalofeachgroupistomatchthesystemta- 

?his approach, termed collaborative optimization, has sev- 
eral desirable features. Domain-specific design vari- 
ables, constraints, and sensitivities remain associated with 
a specific discipline and do not need to be passed among 
all groups. This permits disciplinary problems to be ad- 
dressed by experts who understimd the physical si@- 
came of the variable or constraint as well as how bestto 
solve the local problem. Subspace optimization pmblms 
may be changed (e.g. adding constraints or local variables) 
without affecting the system-level problem. The method 
provides a general means by which the design process 
may be decomposed and parallelized, and in some imple- 
mentations does not depend on the use of gradient-based 
optimization. 

Several versions of the basic collaborative optimization 
scheme have been investigated and the specific approach 
is perhaps best described by example. Ihe subsequent 
sections provide both a very simple example, intended to 
fLrther &scribe the methodology, and a more realistic 
multidisciplinary aircraft design problem. 
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As 0 firot aumplc d celtaboraa ‘veapimization,consider 
minimization of Rosenbrock’s valley function: 

min: J(XlJ2) = 100 ( ~ 2 -  xl2P + (1 - x ~ P  
solution of this two-variable, l m c m s m d  * 

lem with Variousoptimization techniqpes ispresentbdin 
Ref. 1. In the present analysis, all q t h h t t b  isper- 
f~withthesequentialquadraticprogrammingslgo- 
rithm, NPSOL. From a stiirhg point of [O.O, 0.01, usiag 
analytic gradients, NPSOL reached the the solution in 13 
iterations. For demonstration purpose% assume that we are 
dealing with a mOre complex, multidisciplinary optimiza- 
tion problem than the RosenbrocL valley in which the de- 
sign components are computed by different groups. Al- 
though this mputat ional ly-di~butcd problem may be 
reassembled and solved by a single optimizer, one of the 
significant advantages of coilabcmtive optimization is that 
this inegration is not necessary. For example, suppose 
computation of the Roseribrock objective function is de- 
composed among two groups as, 

mix  J = J 1 +  J2 
where: J1 (XI& = 100 ( ~ 2  - ~ 1 ~ ) ~  
and: Jz(x1) = (1 - ~ 1 ) 2  

Let one analysis grwp be responsible for compnting J1 
andamtherJ2 SinCethecomputationisdiseibuted,~~I- 
labcmuion is required to ensure that the gmups have a con- 
sistent description of the design space. Among numerow 
strategies which achieve the necessary coordination, two 
example approaches are illustrated in figure 8. In both 
cases, the system-level optimizer is used to orchessate the 
o v e d  optimization process through selec: tion of system- 
level met variables. A system-level target is needed for 
each miable which is usedby more than one analysis 
group (e%., y1 which is computed in analysis group 1 and 
input to analysis group 2). The subspace optimizers have 
as design variables all inputs required by their analysis 
group. Note that for analysis group 1, this includes the lo- 
cal -le x~ which is natusedinanalysisgrwp2. Thc 
goal of each subspace optimizer is to minimize the dis- 
crepancy between the local versions of each system-level 
target variable and the target variable itself. Treaunent of 
this discrepancy minimization is the source of the differ- 
ences between the two co-ve strategies. In the fust 
approach (left si& of figure! 8), a summed square discrep 
ancy is minimized and the collaborative framework does 
not introduce any additional umstral ‘nts to the analysis 
group. Note that this subspace objective function is at least 
quadratic but is generally more nonlinear. In the approach 
depicted on the right, a constraint is added for each sys- 
tem-level target needed by the analysis group (Ref. 10). If 
the system-level target is represented locally as an input, 
this added constraint is l h ,  otherwise, the added con- 
saaint is nonlinear. In this formulation, an extra design 
variable ( x 3  is required and the objective is linear. 

Figure 8. Two collaborative optimization approaches 
for Rosenbmcks valley function 

sdulicm strategy 1 
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Obtaining the system-kvel objective gradient and con- 
straint Jacobian by finitedifferencing optimized subprob- 
lems requires numemu subproblem optimizations (each 
with numerous subspace iterations) forevery system-kvcl 
iteration. Fur&hexmcce, these subspace optimizations must 
be tightly converged to to yield accurate derivatives. To 
furthet minimize numerical m, additional calculations 
were performed to s e k t  appropriate finitedifference in- 
tervals. Thw extra iterations are shown in patenthesis in 
Table 1. Without the proper choice of finitedifference in- 
terval, the convergence of the collaborative strategies was 
not robust to changes in the starting point. 

To reduce both computational expense and numerical er- 
ror, optimal sensitivity information from the converged 
subproblem may be used to provide system-level deriva- 
tives. (Ref. 11) This is possible since the system-level tar- 
gets are trated as parameters in the subproblems and as 
design variables in the system optimization. Hence, the 
":in problem Jacobian is equivalent to the subproblem 
dJ /dp. The required information is generally available at 
the solution of each subspace optimization problem (with 
little to no added cost) through the following equation. 
(Refs. 1 1 - 13.) 

-=- 
dP aP 

Here A* represents the Lagrange multiplier vector at the 
solution. Because of the special structure of the collabom- 
tive optimization solution strategies, this equation be- 
comes, 

dJ' aJ 0 - = -= -2(x- x ) 
dP aP for solution strategy 1 

for solution strategy 2 ---+ dJ' -=q aci 
dP aP 

Note that in either of the proposed collaborative formula- 
tions, calculation of the required partial derivatives is trivi- 
al. However, although many optimizers provide an esti- 
mate of X* as part of the mination process, accurate 
estimates are only ensured when the problem has con- 
verged tightly (Refs. 12-13). For this reason, solution 
strategy 1 may be preferred. As shown in Table 1, using 
this post-optimality information results in significant com- 
putational savings by reducing both the finitedifference 
interval computations and the number of calls to each sub- 
space optimizer. Note that in this case, finitedifferencing 
is still used to estimate the system-level objective gradient. 

is effective in both solution strategies, usc of the pvim 
Hessian information is of greatex benefit for Soluticm strat- 

of the pviow solution's active constraint set is of signifi- 
egy2. This perfarancegain Fesults~knowwgc 

cance for strategy 2. 

In another appoach, an extra system-level design variable 
is added (lo) which also serves as the system-level objec- 
tive function (see Fig. 3). This concept which may be 
adapted to either solution strategy results in a linear sys- 
tem-level objective and completely eliminates the fmite- 
difference requirements between the system and subspace 
levels. The analysis group which computes the actual ob 
jective function @roup 2 in this case) is now also responsi- 
ble for matching the target system objective. n i s  added 
responsibility causes mOre difficulty far the subspace anal- 
ysis (as evident in the total number of function evalua- 
tions). Furthermore. an increased number of system-level 
iterations is required. An alternate means of eliminating 
these finitedifference requirements is to rely on additional 
post-optimality information in the subspace analysis to es- 
timate the change in actual objective function with respect 
to a change in the parameters as, 

Figure 9 shows the arrangement of analyses in an example 
aircraft design problem. Here the goal is to select values af 
the design variable that maximize range with a specified 
gross weight. The figure shows the analysis grouped into 
three disciplinary units, aerodynamics, structures, and per- 
formance. The problem stated in this way is not directly 
executable in parallel. Dependent disciplines must wait 
for their inputs variables to be updated before they may 
execute. The issue is further complicated when there axe 
feedbacks as between structures and aerodynamics due to 
aeroelastic effects. In such a case there is an iterative loop 
that may take several iterations to converge before subse- 
quent disciplines (in this case, performance) may be exe- 
cuted. 

Computational expense can be reduced furtha by stamng 
th= subspace optimizers from their previous solutions and 
with knowledge of the previous Hessian. While starting 
the subspace optimization runs from the previous solutions 

Figure 9. Example multidisciplinary aircraft design prob- 
lem: analysis structure. 
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sdulicm strategy 1 
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th= subspace optimizers from their previous solutions and 
with knowledge of the previous Hessian. While starting 
the subspace optimization runs from the previous solutions 

Figure 9. Example multidisciplinary aircraft design prob- 
lem: analysis structure. 
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Posed as a collaborative optimization problem, the design 
task is decomposedas shown in figure 10. Each ofthedis- 
ciplinary units becomes an iadependent subproblem. Ehch 
sub-jmblem cmsisrs of two parts: a subspace optimiza 
andananalysisroutine. Theoptimizermodifies the input 
values for the sub-problem analysis and uses the analysis 
output values to fonn the constraints and objective. The 
optimizer also accepts a set of target values for these vari- 
ables. The goal of the subspatx optimization is to adjust 
the local design variables to minimize the difference be- 
tween local variable values (both inputs to, and results 
from, the sub-problem analysis) and the target values 
passed to the subspace optimizer. To designate these tar- 
get values the CO methodology adds a system-level opti- 
mizer. This optimizer specifies the target values of the de- 
sign parameters and passes them to each of the sub- 
problems. The system-level optimizer's goal is to adjust 
the parameter values so that the objective function (in this 
case, range) is maximized while the system-level con- 
straints are satisfied. 

In this problem there are three system-level constraints. 
Note from the figure that these constraints are simply the 
values of the objective function of each of the sub- 
problems. Thus, the scheme allows the subproblems to 
temporarily disagree with each other but the equality con- 
straints (Ji=J2=J3=O) at the system-level qu i r e  that in 
the end, they all agree. So at the end of the optimization 
all local variable values will be the same as the target val- 
ues (those with the "0" subscript) designated by the sys- 
tem-level (i.e. Q = R). 

xo - & *. A h .  phb 
M o  ns.nn*o 

For example, assume that the system-level optimizer 
chooses M initial set of design parameters, %. Each of 
the sub-lev& will then attempt m match this set Howev- 
et, if rhe super-level asks for a physically impossible com- 
bination, then the sub-pmblem will only be able toreturn a 
m-m value of its objective function J1. This non-zero 
value is then recognized by the sysem-level and a more 
feasible choice of target panuneters (X,,) is selected. This 
next set allows the sub-problem to obtain a minimum ob- 
jective function (J 1) lower than with the previous set. It is 
through such a mechanism that the sub-pblems influence 
the progress of the design optimization. 

Via a similar mechanism, constraints that exist at the 
sub-pblem level may influence the target (system-level) 
variable values, and, through this, the value used in an- 
other discipline. In this way, constraints that affect one 
discipline may implicitly affect another without the need 
for an explicit transfer of information concerning the con- 
straint to a foreign discipline. 

One of the primary advantages of this arrangement is that 
the system is now executable in parallel. In fact, this ar- 
chitecture minimizes the interdiscipinary communication 
requirements, making it ideal for network implementa- 
tions. This example problem has been run both on a sin- 
gle workstation and on a system of three ne€wded com- 
puters. 

Results 
Figure 11 shows the optimization history of the design 

variables. Range was computed by the performance anal- 
ysis using the B r e w  range equation. Wing weight was 
computed using statistically-based equations for typical 
weights of transport aimraft wings given maximum load 
factor, aircraft weights, and wing geometry. The twist an- 
gle was also calculated by the structures discipline. It rep 
resents the maximum structural twist of a wing under cer- 
tain aerodynamic loads. These twists are computed for a 
given maximum gust loading which is calculated in the 
aerodynamics discipline. The twist itself feeds back into 
the aerodynamics discipline and changes aerodynamic 
loading on the wing. The aerodynamics discipline uses 
simple relations to produce the aerodynamic loading and 
the lift-todrag ratio (used in calculating range). 

Figure 10. Collaborative form of aircraft design problem. 
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Figure 11: History of Sup-Level Variable Changes 

The figure shows that the variables nearly reach theit con- 
verged values within 10 iterations of the starting point 
Within each of these iterations there are many sublevel it- 
erations as the sublevels attempt to match the system- 
level target variable values. To illustrate this prccess the 
variation in the parameter aspect ratio is shown in Figure 
12a and b. 
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Figure 12a shows the variation of aspect mtio and range 

space nsults during the first five system-level iterations. 
s~&em-level itarations. Fig~r! 12b shows sub 

Included on the plot an the targu values for aspect ratio 

value of aspect ratio used in the bcal sub-@lms of 
designated by t h ~  ~ystem-levcl OpimiZer along With the 

structures and acmdynamics. Note that mitially these 
groups start out with their own guesses for aspect ratio 
(the structures group guesses a low 8.0, the aerodynami- 
cists hope it will be 14.0). They receive the target value 
from the system-level optimizer (12.0) and immediately 
try to match it. For the next two system-level iterations 
the targa value of aspect ratio is not changed by the sys- 
tem optimizer. At the third iteration, though, themget val- 
ue for aspect ratio is red& to about 11.5. One can see 
that the sub-problems immediately try to match this value. 

Note that the subproblems occasionally do not exactly 
match the target value as may be seen after system-level 
iteration #2;. This is because, as was described earlier in 
this section, the subproblems are trying to achieve the 
best match far the entire set of design variables not simply 
the one shown here. So in this instance, the sub-problem 
found that allowing a slight deviation in the local value of 
aspect ratio allowed a greates degree of Compatibility be- 
tween all the variable values used in that sub-problem and 
their corresponding target values. 

As describexi in the previous section, the gradient of the 
objective function and the gradient of the COllstraJn *tsatthe 
system level may be computed analytically based on opti- 
mal sensitivity results. In fact, in this problem it was 
found that these gmdients need to be specified analytical- 
ly for computational stability. Obtaining gradients via fi- 
nitedifferencing can lead to spurious gradient values and 
difficulties for the system level optimizer. These same 
problems result when the tolerances of the sub-problems 
are not set properly and the sub-problems do not reach a 
satisfactory solution. 

Figure 12a&b : Changes in Aspect Ratio at System and 
Subsystem Levels 
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whether the analysis is decomposed using compatibility 
constraints, artbe design poMem is dccoarposed using 
collaborativeopimization,thesaucturedthedccomposi- 
tiondetenninestheefficiencyofthedecomposedsyslem 
For example, consider two subroutines with wmputath 
timesA andB,withn hputstoA,andm intermediate 
values computed by A which m inputs to B. To compute 
gradients of quantities computed by B with respect to the 
inputs of A , the computational time using finite differenc- 
es is n(A+B). If we use decomposition. the computation 
time for all the gradients becomes nA + mB. When n is 
much larger than m (contraction), decomposition will gen- 
erally reduce computation time. If, however, m is larger 
than n, decomposition may increase computation time. 
Such ideas were considered in the decomposition of the 
aircraft design problem in figure 4, but only in a qualita- 
tive fashion. Moreover. the ad hoc procedure was quite 
time-consuming. To exploit contraction, avoid expansion, 
and assign analyses to subproblems efficiently, an auto- 
matic tool is desirable. Such a program is described here. 
It uses a genetic algorithm to find a decomposition that 
minimizes the estimated computational time of a gradient- 
based optimization of the resulting decomposed system. 

Given a list of analyses and the global variables which are 
inputs and outputs to each, the program creates ahpea- 
dence matrix of integers. The element Dep(ij) corre 
sponds to the number of outputs fnnn routine i which are 
inputs to routine j .  If the routines are executed sequential- 
ly, entries in Dep which are below the main diagonal are 
feedbacks, and entries above the main diagonal im feed- 
forwards. As theordersoftheroutinesarechanged, the 
structures of the dependence matrix changes. By includ- 
ing infomation about where in the ordering there are 
"breaks" between subpmblems, various objective func- 
tions can be evaluated from the dependence matrix. 

Several methods for task-ordering have been developed 
previously, but not with the objective of scheduling the 
optimization of a decomposed system. The Design Man- 
ager's Aid, DeIvfaid (Ref. 2). for example, uses a heuristic 
approach to order tasks into a system of subproblems. 
One of the results of the DeMaid heuristic is that feedback 
loops, particularly long loops, are removed. Figure 13 il- 
lustrates the ordering of tasks, as described in reference 2, 
that minimizes a m u r e  of feedback extent, J. The ob- 
jective function used here is: 

n i -1 -- 
J = A 2 Dep (i j) (i-j) 

i = l j = l  

and reflects the "total length of feedback" in the system. 
The solution shown in Figure 13, was obtained by the 

present SChtQling algorithm using this objc€tivc. It is 
nearly identical to theoneobtakdby DeMaid, which 
does not employ an explicit objective function. Although 
the subppobkmsare in adiffereat ordet, cach Consists of 

second,which is aunionof twosubproblems from t h e b  
Maid solutioh 

I "  I I I I I  

thcsamcanal~as m the DeMaidpoblem,exceptthe 

Figure 13. Solution of the DeMaid example problem us- 
mg extent of feedback as objective function. 

Minimizing feedback exm is not the goal for a system 

timization. The difference between feedback and feedfor- 

Therefore the length of an individual feedback is unimpor- 
tant, and some feedback benveen the subproblems is not 
disadvantageous. Conversely, the number of feedforwads 
between subproblems is important. Thus, a rather differ- 
ent objective is used for the optimal decomposition formu- 
lation. The objective used here is an explicit estimate of 
the computation time for optimization of the decomposed 
designproblem. 

that is decomposed using compatibility constraints and op- 

ward disappeafs, since the subproblems run in parallel. 

The time estimate assumes the following about the optimi- 
zation of the system: gradients are estimated by finite- 
differencing, no secondderivatives are computed (the es- 
timated Hessian is updated); and gradient calculations 
dominate the computation time. These assumptions are 
consistent with aircraft sizing problems and with the use 
of NPSOL, a commonly used optimization package. In 
addition, it is assumed that the subproblems can be execut- 
ed in parallel. Finally,we assume that gradients for a sub- 
problem depend on all routines within that subproblem. 

The objective function is then: 
= Toptimiation = @he searches) * peach line search) 

N h e  -,.hes is proportional to the total number of vari- 
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abies. Therdore the numbex of line searches varies as: 
%ne searches =%esign vars + Nauxiliary design vars 

For a typical gradient-based optimization each line search 
requires that each subroutine be executed once for cach in- 
dependent variable (for gradients) and then an averaw of 
twice more for the line search itself. Ihe taal numbex of 
calls tothemtinesineachgroup is the= 
N* = * + Ndesign vars(sub i) + Nauxiliary var (sub i) 

where N~Q.,, vars (sub i) is the number of design vari- 
ables that are inputs to routines in the i h  subpr~blem. 
Since the subproblems are run in parallel, the time for 
each line search is determined by the slowest subproblem: 
T b e  i = max (Ncalls, * X(execution times of routines in 
subproblem i)) 

12 

BIUL 

Subroutine 9 

Subroutine 6 
Subroutine 4 

BlUk 

Subroutine 5 
Subroutine 8 

Genetic Independent 
String Subtasks 

The full objective function is therefore: Figure 14. Decoding of genetic string into subroutine or- 
der and subproblems. = mdesign v a n  + Nauxiliary design vars) * i 

Planning an efficient decomposition is an optimization 
task in itself. The optimizer seeks to find the correct loca- 
tion for each subroutine in the analysis procedure. Con- 
ventional calculus-based optimizers are not effective in 
this domain, but a number of genetic algorithms have been 
developed for the solution of planning problems. 

Genetic algorithms are designed to mimic evolutionary se- 
lection. A population of candidate designs is evaluated at 
each iteration, and the candidates compete to contribute to 
the production of new designs. Each individual is repre- 
sented by a String. which is a coded listing of the values of 
the design variables. The entire string is analogous to a 
chromosome. with genes for the different features (or vari- 
ables). When individuals am selected to be parents for 
offspring designs, their genetic strings are recombined in a 
crossover operation, so that the new designs have elements 
of two earlier designs. A mutation operatian also allows 
modification of elements of the new individual so that ;t 
may include new features that were not present in either 
parent. 

The genetic smng for the decomposition problem is an in- 
teger vector of length n+m. where n is the number of anal- 
ysis subroutines and m is the number of potential break 
points (allowing m+l  independent subtasks). Each popu- 
lation member is a permutation of the integers between 1 
and n+m. For a task with 10 subroutines to be split into 3 
sub-tasks, n=10 and -2. A sample genetic string and the 
computational system that it represents are shown in Fig- 
ure 14. 

Simple crossover operators are not appropriate for permu- 
tation problems, because they do not guarantee offspring 
that include exactly one copy of each design variable, and 
no duplicates. Several crossover schemes have been de- 
veloped for use in planning problems. Six of these were 
compared by Starkweather et al. (Ref 14). They found 
that the best overall performance (on a travelling salesman 
problem and a warehouse./shipping scheduling problem) 
was achieved by position-based crossover, originally intro- 
duced by Syswexda (Ref. 15). This scheme was adopted 
for the decomposition problem. 

position-based cmssovef requires the randoin selection of 
several positions in the string. The entries at these posi- 
tions are passed directly to the offspring by one parent. 
The remaining positions are filled by variables from the 
second parent, in the order that they appear in that parent. 
In Figure 15, bl, dl  and gl are inherited directly from the 
firs parent, so a, c,e, f must be supplied by the second 
parent. They appear in the order a2, f2, c2, e2 and fill po- 
sitions l, 3,5,6 of the offspring. 

Parent 1 t a l  b l  e l  d l  e l  f l  gll 

Parent 2 lb2 d2 a2 f2 c2  92 e21  
* * * 

Offspring [a2 b l  f 2  d l  c 2  e2  gl1 

Figure 15. Position-based crossover. 

'Ihe mutation operator is applied pointwise along the 
string. When a point is selected to undergo mutation, the 
variable at that position is swapped with another at a dif- 
ferent point in the string. ' he  second point is randomly 
selected between 1 and a user-specified maximum muta- 
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tion range. Thc gcndic algorithm use8 twrnament Seh- 
tion to choose p n o  to participate in repductirn into 
the next generation. Each time a patent is needed, two 
membea of the carrent population am selected at random. 
Their fitness is competed, and the individual with greata 
f i ~ b e ! c ~ t h e ~ t .  

'Ihe following parametex settings were used in studies re- 

wise mutation probability is 0.01: and maximum muration 
range is half the total string length, or (n+m)/2. 

ported here: CTOSSOVW probslbility i~ fixed Bt o.% p ~ h t -  

Results 
The DeMaid problem, described previously, was solved 
with this objective, assuming that the overall design prob- 
lem consisted of as many as 9 subproblems. The Optimal 
decomposition is shown in figure 16. The estimated opti- 
mization time for this system is 3.147, compared with De- 
Maid's ordering which yields a time of 3.325. As is clear 
from the figure, the extent of feedback is substantially 
greater for this solution despite its more efficient parallel 
decomposition. 

figure 16. 'Ihe DeMaid sample problem as ordered for 
optimization with decomposition using compatibility con- 
straints. 

Using this objective function, the optimal decomposition 
tool has been applied to PASS, yielding a structure very 
similar to that produced manually and shown in figure 4. 

Other objective functions which will soon be formulated 
include one for decomposition with compatibility con- 
straints assuming gradient information from automatic dif- 
ferentiation rather than fmite-differencing, and one for col- 
laborative optimization. The fact that a new objective for 
a different type of problem can be easily inserted makes 
this program a flexible and useful tool which can be adapt- 
ed to a variety of different formulations. 

cmdJukm 

peliminerydesignofcomplexsystems. ContirmingWorL 

gits,fiathadevtlapnentof~positionandapimiza- 

tion to hgex scale dcsign probkms. m work reported 

'Ihe present work repnsenar an initial look at new archi- 
ttctures far multidisciplinary optimization applied to the 

includes evaluation of a variety of implementation strate 

th tools compatible with dKse appoaches, and appiiCa- 
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